A. Summary

This section contains design criteria for fuses rated at 600 volts and less.

B. System Design and Performance Requirements

1. Select the short-circuit interrupting ratings of fuses in accordance with a short-circuit analysis that accounts for all current sources and impedances between the sources and the fuses. The minimum interrupting rating must be 50,000 amperes.

2. Selectively coordinate all fuses for all faults and overload conditions so that a fuse clears before any over-current device on its line side and remains intact throughout the clearing time of any device on its load side.

3. Current limiting fuses may be specified, where appropriate, based on the results of the short-circuit and coordination studies described in paragraphs 1 and 2.

4. Fuses for use on motor circuits must incorporate time delay characteristics to pass motor starting currents.

C. Product Standards

Ensure that all products conform to the following standards:

- NEMA FU1, Low-Voltage Cartridge Fuses
- UL 198C, High-Interrupting-Capacity Fuses, Current-Limiting Types
- UL 198E, Class R Fuses

D. Manufacturers

Subject to compliance with the design requirements, provide products by one of the following manufacturers:

- Bussmann
• Gould Shawmut
• Littelfuse

E. Materials

1. Fuses connected directly to switchboard buses must be Class L. All other fuses must be class RK5, unless specific design conditions require class RK1.

2. The following fuses are not acceptable:
 • Class G fuses
 • Class H fuses
 • Class J fuses
 • Class T fuses
 • Plug fuses
 • Renewable fuses

F. Installation Guidelines

1. Install fuses so that ratings are readily visible.

2. Specify spare fuses as follows:
 • Two sets of three fuses of each size and type installed in main distribution center and distribution switchboards.
 • Ten percent, but not less than three additional fuses for each size and type of fuse used in all other locations.

“END OF SECTION”